- 1 复旦科研团队研发基于全
- 2 中国科大在钙钛矿半导体
- 3 季华实验室在高分辨率OLE
- 4 北京工业大学在高性能线
- 5 圣母大学开发利用光治疗
- 6 南科大林君浩课题组合作
- 7 美国开发新型自旋控制LED
- 8 广东省科学院半导体研究
- 9 中山大学团队及其合作者
- 10 大连化物所研制出“风车型
前言
现今LED显示屏运用越来越广,凡举金融证券、体育、交通讯息、广告传递等都可以看到它的足跡,也因为最近几年LED成本下降及亮度的提升再加上LED显示屏更具有耗电少、寿命长、视角大及响应速度快等优势;而且可以根据不同地点及需求订制相对应的尺寸,在市场上快速崛起成新一代的传播媒体宠儿,其条件更是其他大型显示设备无法比拟的。本文将进一步一一说明如何不变更电路设计,利用驱动芯片的快速响应优势来实现高画质的LED显示屏。
整体速度的提升- 更高的刷新频率与换帧频率
LED是经由流过的电流来驱动的,而通过的脉冲宽度可以控制LED的亮度及灰度,简单来说若不考虑系统端的设计,刷新频率(refresh rate)是经由寻址时间(Tacc)及流过LED的电流速度所决定的;而换帧频率(frame rate)的提高除了系统的的支持外更需要更快的寻址时间,而寻址时间与传输的时脉(DCLK)与寻址数有强烈的正相关。
例如:有一全彩户外显示屏其寻址数为768,若是使用不同的时脉则整体的寻址时间也会不同
工作时脉为10Mhz -> 768X0.1us = 76.8us
工作时脉为30Mhz-> 768X0.033us = 25.6us
而电流流过LED 的速度决定LED显示屏的刷新频率,举例说明若一LED显示屏其寻址数皆为768、工作时脉为30Mhz、灰阶调整为8位元(bits)、亮度调整皆为2位元(bits)、每子场的间隔时间为4us;传统驱动芯片其显示的脉冲宽度为250ns,而SnapDrive驱动芯片的脉冲宽度为50ns,两者可以达到的刷新频率有明显的差异
A.传统驱动芯片(脉冲宽度为250ns)
权重安排为 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4 ,8, 16,32
Tfr=25.6usx[6+63]+5x4us = 1786.4us
Fr = 559.7Hz
B.SnapDrive驱动芯片(脉冲宽度为50ns)
权重安排为 1/512,1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4
Tfr=25.6usx[9+7]+8x4us=441.6us
Fr=2264.5Hz
显示灰阶度提升
目前市场上一般通用的传统驱动芯片其OE响应时间约为250ns ,若以上述的例子来看其最高的灰阶为8位元;亦即R,G,B各有256个灰阶度。其色彩为256X256X256 = 166777216 约1千六百万色。若想将灰阶度提高至14位元亦即16384X16384X16384=4.39千亿色;两者之间的刷新频率亦会得到明显的差异
A.传统驱动芯片(脉冲宽度为250ns)
权重安排为 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4 ,8, 16 ,32 ,64, 128, 256, 512, 1024, 2048
Tfr=25.6usx[6+4095]+5x4us = 105005.6us
Fr = 9.5 Hz
B.SnapDrive驱动芯片(脉冲宽度为25ns)
权重安排为 1/1024, 1/512, 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 ,1 ,2 ,4 ,8, 16, 32, 64, 128
Tfr=25.6usx[10+255]+9x4us=6820us
Fr=146.6Hz
|
Improvement on Refresh Rate
@ 14-bit grayscale + 2-bit Brightness
|
Improvement on Refresh Rate
@ 8-bit grayscale + 2-bit Brightness
|
||
|
SnapDriveTM
|
Conventional
|
SnapDriveTM
|
Conventional
|
Color
|
4.39x1012
|
4.39x1012
|
16.7x106
|
16.7x106
|
Refresh Rate
|
146.6Hz
|
9.5Hz
|
2264.5Hz
|
559.7Hz
|
表1为传统驱动芯片及SnapDriveTM驱动芯片综合表现
以下为台湾迅杰科技推出包含SnapDriveTM技术之驱动芯片测试条件及结果,藉图1及图3可以明显看出其驱动芯片在极小的OE脉冲宽度下其输出电流仍为线性输出,而传统驱动芯片则无法提供线性的输出。
测试条件:
Vcc=5V ,Iout=38.3mA,RL=47Ω,CL=13pF
图1:OE脉冲宽度与输出电流之曲线
图2:传统驱动芯片(非线性输出) 图3:SnapDriveTM之驱动芯片(线性输出)
失真率的降低
针对不同的输出电流斜率的驱动芯片,利用仿真软体(HSPICE2007)我们在失真率方面我们得到不同的结果
失真率
|
Distortion
|
SnapDriveTMDriver IC
|
1%
|
Conventional Driver IC
|
49%
|
表2:失真率比较表
仿真条件:传统驱动芯片: Ton:160ns, Tof:70ns
SnapDriveTM驱动芯片:Ton:15ns, Tof:15ns
Vin :5V , Iout=20mA , LED等效电路RL:52Ω,CL:10pf
OE 脉冲宽度为:250ns
图4:输出电流失真率
解决LED 热的问题及增加LED的寿命
如图5所示为50% Duty cycle的电流输出示意图,若在同一个时间内将出电流的脉冲平均打散,不但不影响输出电流及LED的亮度也可以避免LED长时间的点亮造成LED过热及寿命提早衰减的现象。
图5:输出电流示意图
快速响应电路设计
使用快速响应的驱动芯片虽然可以提高LED显示屏之灰阶度及刷新频率;不过根据电感效应的公式 ΔV= L •di/dt 因时间t变小;相对而言瞬间的电压变大所以容易产生突波。笔者在此列上几个电路设计上的改善方式供读者参考:
ΔV :电压的变化量
L:电路上寄生之电感
di:对电流的微分
dt:对时间的微分
在电路设计上有几点需要特别注意:
1.PCB最好是4层板以上,将电源及地独立一层;走线部份越短越好。
2.VLED及VCC对地端加上一个大的稳压电容,建议CP1及CP2为1000~1500uF。
3.VLED与VCC分开为不同电源。
4.可在时脉输入端(Clock)加上RC电路,将其峰值降低,降低对电磁干扰的影响;建议Rt<22Ω、Ct<33pF。
图6:驱动芯片串联电路
扫描屏上;建议在MOS的Gate端与74HC138之间串一个电阻,以避免VLED端的电感效应及MOS端寄生电容所产生的突波,造成74HC138烧毁;建议Rg<100Ω、Cg<47pF(电容部份可选择不加)。
E-mail: jeff_cheng@ene.com.tw
参考文献:
[1] 李熹霖 现代显示1006-6268(2004)01-0022-05 谈LED大屏的刷新频率和换帧频率
[2] 王丽莉、董金明 LED全彩屏脉冲打散显示方案 2006